

OCM/ENV/1357/2022

Date: 29.09.2022

To

The Member Secretary
State Pollution Control Board, Odisha
Paribesh Bhawan, Unit-VIII
BHUBANESWAR – 751 012

Sub: Submission of Annual Environmental Statement in Form-V for the Year 2021-22 in respect of Ostapal Chromite Mine M/s. FACOR Ltd.

Dear Sir.

With reference to the captioned subject, we are herewith submitting the Environmental Statement in the prescribed format Form-V, duly filled in, for the year 2021-22 in respect of **Ostapal Chromite Mines** M/s. Ferro Alloys Corporation Limited for your kind perusal.

This is for your kind information & perusal please.

Thanking you,

Yours faithfully,

for Ferro Alloys Corporation Ltd

Mines Manager Ostapal Chromite Mines

Enclosure: As above

Copy to: 1) Regional Officer, OSPCB, Kalinganagar – Jajpur

2) MoEF & CC Eastern Regional Office by Email.

FORM -V

ENVIRONMENTAL STATEMENT OF OSTAPAL CHROMITE MINES OF M/S.FACOR LTD., ENVIRONMENT STATEMENT FOR THE FINANCIAL YEAR ENDING ON 31ST MARCH 2022

(PART -A)

i)	Name & Address of the Owner/Occupier of the Industry operation or Process	M/s. FERRO ALLOYS CORPORATION LTD., D.P.Nagar, Randia Bhadrak
ii)	Industry Category Primary – (SIC Code) Secondary – (SIC Code)	CHROMITE MINING INDUSTRY
iii)	Production Capacity – Unit	2 Lakh TPA Chrome Ore from Mines 1.00 Lakh TPA Beneficiated Chrome Ore From COB Plant
iv)	Year of Establishment	13 th August, 1985
v)	Date of last Environmental Statement submitted	27.09.2021 (For the Financial Year 2020-21)

(PART – B) WATER & RAW MATERIAL CONSUMPTION

(i) Water Consumption M³/day:

Α	WATER CONSUMPTION: FY 2021-22		
	Water Consumption M3/day	Total In a Year (Cub Mt)	Avg Cub mt/Day
	a) Process (Beneficiation plant)	75670	208
	b) Cooling, dust suppression,	1052	
	afforestation etc	1852	5
	c) Domestic	26326	72
	Total Consumption	103848	285

В	PROCESS WATER CONSUMPTION PER PRODUCT OUTPUT						
	Name of the Products	During the Previous	During the Current				
		Financial Year 2020-21	Financial Year 2021-22				
	a) Chrome ore Concentrate from COB Plant (Cub Mt /MT)	1.39	1.56				
	b) Chrome ore from Mines (Cub Mt /MT)	0.441	0.52				

ii) Raw Material Consumption:

FACOR is involved in extraction of Chrome Ore from Mine /quarry .Mining is not a Manufacturing Process thus there are no such raw materials involved in the process. However, there are number of Indirect raw materials/Consumables used to support the process of Mining & beneficiation of Ore. The details consumable raw materials as follows:

	Indirect Raw Materials /consumables	
SI No.	Name of the Raw materail/Consumable	During 2021-22
1	Disel (Litres)	582773
2	Gas (Cu. M)	190
3	Lubricant Oil (Litres)	2494
4	Grease (Kg)	447
5	Electricity (Consumed) (Kwh)	804061
6	Electricity (Generated) (Kwh)	23395
	Explosive (Kg)	53800 kg
7	(Detonator, Safety fuse)	(5570 nos.,14725mtrs)
8	Tyre Nos.	16

(PART – C)
POLLLUTION DISCHARGED TO ENVIRONMENT/UNIT OF OUTPUT
(PARAMETER AS SPECIFIED IN THE CONSENT ISSUED)

a)	Water *	Annual Avg.	Annual Avg.	Annual Avg. (%)
		in Kg/day	in mg/l	
1	Suspended Solids	43.2	22.5	Below prescribed
				standard
2	Oil & Grease	8.8	4.6	-do-
3.	B.O.D	8.9	4.65	-do-
4.	C.O.D	34	17.7	-do-
5.	Hexavalent Chromium (Cr ⁺⁶)	0.002	0.001	-do-
6.	Total Chromium (Cr)	0.6	0.3	-do-

b) AIR ** - Not applicable. since it is a Mining Industry.

NOTE * All the analyzed parameters of Mines pumped out water are well within the prescribed limit except hexavalent Chromium, for which ETP has been commissioned. Analysis report of final discharge water (after treatment) is enclosed as ANNEXURE – I.

^{**} Air quality analysis report of core & Buffer Zone is enclosed as ANNEXURE – 2A & 2B

(PART – D) HAZARDOUS WASTES

AS SPECIFIED UNDER HAZARDOUS WASTES/MANAGEMENT & HANDLING RULES, 2008

Sl.No.	Hazardous Wastes	TOTAL QUANTITY (Kg.)			
		During the previous	During the Current		
		Financial Year	Financial Year		
		2020-21	2021-22		
(a)	FROM PROCESS:				
I)	Filter & filter materials containing oil	30.0	19.70		
II)	Used oil/waste oil from vehicles	345	264		
(b)	From Pollution Control facilities (ETP Sludge)	24,600	19480		

(PART – E) SOLID WASTES

		TOTAL Q	UANTITY
Sl.No.	PARTICULARS	During the previous	During the Current
		Financial Year	Financial Year
		2020-21	2021-22
(a)	FROM PROCESS:		
I)	Overburden	2.865 Lac M ³	4.75 Lac M ³
II)	Tailings	0.150 Lac Tons	0.291 Lac Ton
(b)	From Pollution Control facilities (ETP SLUDGE)	24.600 Tons	19.48 Tons
(i)	Qnty. Recycled/or reutilized within the Unit	Nil	NIL
(ii)	Sold	Nil	NIL
(iii)	Disposed – Overburden	2.865 Lac M ³	4.75 Lac M ³
(iV)	Disposed - Tailings	0.150 Lac Tons	0.291 Lac Ton

(PART - F)

Please specify the characteristics (in terms of composition and quantity) of Hazardous as well as Solid wastes and indicate disposal practice adopted for both these categories of wastes.

Sl.No.	Name of Hazardous/ Solid Wastes	Composition	Quantity	Disposal Practice
a)	HAZARDOUS WASTES:			Filter materials generated during
i)	Filter & filter materials			repairing & maintenance of
	containing oil	-	19.70 Tons	vehicles are being disposed of in an impervious lined pit.
ii)	Used Oil/Waste oil	-	0.264 Tons	Used oil/waste oil from vehicles & transformers have been collected in barrels and kept under a covered shed to sell to a Regd. Authorized Dealer.
iii)	ETP Sludge	Clay soil	19.48 Tons	ETP sludge is being disposed of in impervious lined pit for onward disposed to authorized agency by SPCB.
b)	SOLID WASTES:			
i)	Overburden	Laterite & weathered ultra-basic rock	4.75 Lac M ³	The solid wastes are generated as overburden is dumped in specified area of non-mineralized zones. After terracing and benching, massive afforestation is being carried out over these dumps.
			0.291 Lac	
ii)	Tailings	Sandy with Clay	Tons	Tailings are being disposed of in Tailing Ponds after treatment with FeSo ₄ solution.

(PART - G)

IMPACT OF THE POLLUTION ABATEMENT MEASURES TAKEN ON CONSERVATION OF NATURAL RESOURCES AND ON THE COST OF PRODUCTION

 Fully utilization of Low Grade ore by Beneficiation, use of mine drainage water in beneficiation, recovery of tailing water & recirculation in beneficiation plant. Mine water discharge to outside after treatment.

(PART - H)

ADDITIONAL MEASURES/INVESTMENT PROPOSAL FOR ENVIRONMENTAL PROTECTION INCLUDING ABATEMENT OF POLLUTION, PREVENTION OF POLLUTION

(a) Expense of Rs. 65.90 lakh during the year 2021-22 for environmental protection including abatement of pollution & prevention of pollution.

(b) Action taken to monitor the Environmental parameters.

Monitoring is being carried out for environmental Parameters of Air Quality, Water Quality, Noise level Measurement on quarterly basis.

$\mbox{(PART-I)} \\ \mbox{ANY OTHER PARTICULARS FOR IMPROVING THE QUALITY OF THE ENVIRONMENT}$

Action taken for massive afforestation	Extensive plantation program has been done and shall be taken upon available spaces, on dumps, roads, and also
Measures taken to control of the fugitive emission at different places of Mines.	In order to suppress the air borne dust from the haulage roads and mine roads, there are arrangements for water spraying system through tankers and spraying of water is being done in regular intervals.
Action taken for disposal of the excavated material not required for industrial purpose	The overburden waste which are not required for industrial purpose are dumped within the leasehold area at the earmarked site and terraced by forming benches and reclaimed with different plant species.
Method adopted for controlling of dust pollution due to drilling	 Wet drilling is being practiced with a jet of water which is continuously directed at the cutting edge to suppress dust generation. The cutting tools are being regularly grinded to maintain its sharpness by cross checking against gauges. Compressed air pressure is being adequately supplied to the cutting tools. Drill cutting are being regularly cleaned
Method adopted for controlling of dust pollution due to blasting Action taken to remove Cr ⁺⁶ from Quarry pumped out water and surface runoff water.	Water spraying before & after blasting is being practiced to reduce the possible dust generation. An upgraded ETP is being operating to reduce Cr ⁺⁶ from Quarry pumped out water and surface runoff water by dosing FeSo ₄ solution. Also enhanced the ETP capacity from 400 KL/Hr to 600 KL/hr

EFFLUENT WATER ANALYSIS REPORT AS PER IS-2490 & MOEF GUIDELINE 19.05.93

Visiontek Consultancy Services Pvt. Ltd. (Committed For Better Environment) (Laboratory Services)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation
- Agricultural Development

Laboratory Services
Environment Lab
Food Lab
Material Lab
Soil Lab
Mineral Lab & Microbiology Lab

- Infrastructure Enginering
- Water Resource Management
- · Environmental & Social Study
- Quality Control & Project Management
 Renewable Energy
- Information Technology Public Health Engineering
- Mine Planning & Design
 Mineral/Sub-Soil Exploration
 Waste Management Services

Ref: Envlab/22/R-1529 Date: 28.04.2022

5. ETP Water Quality Analysis:

SI.			Standards (In	Analysis Results	Analysis Results	Analysis Results	Analysis Results	Annua
No.	Parameters	Unit	land Surface water)	21-Jun	21-Sep	21-Dec	22-Mar	Averag
1	Colour	Hazen	Colourless	5	5	5	10	6.25
2	Odour	-	Odourless	pungent smell	pungent smell	pungent smell	pungent smell	punger
3	pH at 25°C		5.5-9.0	7.89	7.81	8.1	7.98	7.945
4	Total Suspended Solids	mg/l	100	20	18	20	32	22.5
5	Copper as Cu	mg/l	3	< 0.05	<0.05	< 0.05	< 0.05	<0.05
6	Fluoride as F	mg/l	2	0.28	0.21	0.28	0.38	6.25
7	Total Residual Chlorine	mg/l	1	ND	ND	ND	ND	ND
8	Iron as Fe	mg/l	3	0.54	0.52	0.34	0.42	0.45
9	Manganese as Mn	mg/l	2	<0.05	<0.05	<0.05	<0.05	<0.0
0	Nitrate as NO ₃	mg/l	10	7.9	7.1	7.34	7.46	7.45
11	Phenolic Compounds as C ₆ H ₆ OH	mg/l	1	< 0.001	<0.001	<0.001	<0.001	<0.00
2	Selenium as Se	mg/l	0.05	<0.01	<0.01	<0.01	<0.01	<0.0
3	Cadmium as Cd	mg/l	2	< 0.001	< 0.001	< 0.001	< 0.001	<0.00
4	Cyanide as CN	mg/l	0.2	< 0.05	<0.05	< 0.05	< 0.05	<0.0
5	Lead as Pb	mg/l	0.1	<0.01	<0.01	< 0.01	< 0.01	<0.0
6	Mercury as Hg	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001	<0.00
7	Nickel as Ni	mg/l	3	< 0.05	<0.05	< 0.05	< 0.05	<0.0
8	Arsenic as As	mg/l	0.2	< 0.05	<0.05	< 0.05	<0.05	<0.0
9	Total Chromium as Cr	mg/l	2	0.36	0.31	0.28	0.28	0.307
0	Zinc as Zn	mg/l	5	0.028	0.022	0.021	0.024	0.023
1	Hexavalent Chromium as Cr ⁺⁶	mg/l	0.1	< 0.001	0.018	< 0.001	< 0.001	<0.00
2	Vanadium as V	mg/l	0.2	< 0.001	< 0.001	< 0.001	< 0.001	<0.00
3	Temperature	Oc	Shall not exceed 5degree C above the receiving water temperature	36	34	24	33	31.7
14	Dissolved Oxygen	mg/l		6.9	6.2	7.1	6.1	6.57
5	Biochemical Oxygen Demand as BOD	mg/l	30	6	3.8	6.6	2.2	4.65
6	Chemical Oxygen Demand as COD	mg/l	250	20	14	20.8	16	17.
7	Oil & Grease	mg/l	10	5.2	4.6	4.8	3.8	4.6
9	Ammonical Nitrogen as N	mg/l	50	1.6	1.2	1.4	2.4	1.65
0	Total Kjeldahl Nitrogen as N	mg/l	100	5.4	4.6	5.4	3.9	4.82
1	Sulphide as S	mg/l	2	<0.001	<0.001	<0.001	<0.001	<0.00
32	Free Ammonia as NH ₃	mg/l	10	4.6	4.1	5.4	4.4	4.62
3	Particulate Size of Suspended Solids	μ	Shall pass 850 micron IS Sieve	<850	<850	<850	<850	<850
4	Bio-assay T	%	90% survival of fish after 96 hours in 100% effluent	98% Survival of Fish after 96 Hrs in 100% Effluent	92% Survival of Fish after 96 Hrs in 100% Effluent	94% Survive 10 Fish after 95 Airs in 100% Enfluent	98.031 vival of Fish ave 96 Hrs in 100 Settluent	98% Surv of Fish at 96 Hrs 100% Effluer

AMBIENT AIR QUALITY (CORE ZONE)

Visiontek Consultancy Services Pvt. Ltd. (Committed For Better Environment) (Laboratory Services)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation
- Agricultural Development
- Mine Planning & Design
- Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services
Environment Lab
Food Lab
Material Lab
Soil Lab
Mineral Lab & Microbiology Lab

 Infrastructure Enginering Water Resource Management

Environmental & Social Study

Renewable Energy

Ref: Envlab/22/R-1510

Quality Control & Project Management

Information Technology

Public Health Engineering

Date: 28.04.2022

YEARLY COMPLIANCE REPORT FROM APRIL 2021 TO MARCH 2022

M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR

1. Ambient Air Quality (Core Zone):

	AMBIENT AIR QUALITY (CORE ZONE)								
AAQ1: Near Dispensary									
Parameters	Unit	CPCB AAQ Standard 2009	21-Apr	21-May	21-Jun	21-Jul	21-Aug	21-Sep	Average
PM ₁₀	μg/m³	100	74.2	73.8	73	59.7	59.8	61.5	67.00
PM _{2.5}	μg/m³	60	44.5	44.8	43.8	35.8	35.9	36.9	40.28
502	μg/m³	80	11.4	11.8	11.6	9.1	8.5	6.4	9.80
NOX	μg/m³	80	14.6	14.2	14.2	11.6	12	13.1	13.28
со	mg/m³	4	1.18	1.24	1.3	0.86	0.79	0.32	0.95
03	μg/m³	100	5.1	5.2	5.2	5.2	5.3	BDL	5.20
NH3	μg/m³	400	20.6	20.8	22	15.7	16.5	BDL	BDL
Pb	μg/m³	1	BDL						
Ni	ng/m³	20	BDL						
As	ng/m³	6	BDL						
Bap	ng/m³	5	BDL						
C6H6	μg/m³	1	BDL						

			AMBI	ENT AIR QUA	ALITY (CORE 2	ONE)			
	AAQ1: Near Dispensary								
Parameters	Unit	CPCB AAQ Standard 2009	21-0ct	21-Nov	21-Dec	22-Jan	22-Feb	22-Mar	Average
PM ₁₀	μg/m³	100	62.5	66.7	62.2	64.5	61.1	62.2	63.20
PM _{2.5}	μg/m³	60	37.5	40	37.3	38.7	36.7	37.3	37.92
502	μg/m³	80	12.6	11.5	11.5	10.7	11.5	11.4	11.53
NOX	μg/m³	80	13.3	13.4	13.5	13.1	13.6	13.5	13.40
со	mg/m³	4	1.02	1.04	1.14	1.3	1.2	1.2	1.15
03	μg/m³	100	5.2	5.3	4.8	4.9	4.6	5.3	5.02
NH3	μg/m³	400	21.2	20.3	21.3	22.3	20	21	BDL
Pb	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Ni	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL	BDL
As	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Вар		5	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Сбну		1	BDL	BDL	BDL	BDL	BDL	SPOULE	BDL

• Infrastructure Enginering

• Water Resource Management

· Environmental & Social Study

Visiontek Consultancy Services Pvt. Ltd.
(Committed For Better Environment)

(Laboratory Services)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation
- Quality Control & Project Management
 Renewable Energy
- Agricultural Development Information Technology
 Public Health Engineering
- Mine Planning & Design
 Mineral/Sub-Soil Exploration
 Waste Management Services

Laboratory Services
Environment Lab
Food Lab
Material Lab
Soil Lab
Mineral Lab & Microbiology Lab

Ref: Envlab/22/R-1511 Date: 28.04.2022

			AMBI	ENT AIR QUA	LITY (CORE Z	ONE)								
	AAQ2: Near Weighbridge													
Parameters	Unit	CPCB AAQ Standard 2009	21-Apr	21-May	21-Jun	21-Jul	21-Aug	21-Sep	Average					
PM ₁₀	μg/m³	100	48.8	48.2	49.1	41.6	53	68	51.45					
PM _{2.5}	μg/m³	60	29.3	30.4	29.4	25	25.8	40.8	30.12					
502	μg/m³	80	11.8	12.1	10.9	9.2	8.9	6	9.82					
NOX	μg/m³	80	7.4	8.1	8.8	9.8	9.9	13.1	9.52					
со	mg/m³	4	1.12	1.16	1.1	0.93	0.88	0.27	0.91					
03	μg/m³	100	4.2	4.6	4.9	5	4.88	BDL	BDL					
NH3	μg/m³	400	19.4	18.8	19.8	15.3	15.7	BDL	BDL					
Pb	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL					
Ni	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL	BDL					
As	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL	BDL					
Вар	ng/m³	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL					
C6H6	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL					

			AMB	IENT AIR QUA	LITY (CORE 2	ONE)			
				AAQ2: Near	Weighbridge				
Parameters	Unit	CPCB AAQ Standard 2009	21-Oct	21-Nov	21-Dec	22-Jan	22-Feb	22-Mar	Average
PM ₁₀	μg/m³	100	39.3	37.3	37.3	48.1	38	48	41.33
PM _{2.5}	μg/m³	60	23.6	22.4	23.2	28.9	22.8	29.3	25.03
502	μg/m³	80	9	9	9.6	8.4	9.2	9.7	9.15
NOX	μg/m³	80	8.2	7.1	6.9	7.5	7.8	7.3	7.47
со	mg/m³	4	0.94	1.03	1.05	1.1	1	1.1	1.04
03	μg/m³	100	4.4	4.7	4.5	5.1	4	5	BDL
NH3	μg/m³	400	16.2	16.5	17.1	16.9	16.3	16.8	BDL
Pb	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Ni	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL	BDL
As	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Вар	ng/m³	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL
С6Н6	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL

• Environmental & Social Study

Visiontek Consultancy Services Pvt. Ltd.
(Committed For Better Environment)

(Laboratory Services)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering • Water Resource Management Surface & Sub-Surface Investigation

• Quality Control & Project Management • Renewable Energy

 Agricultural Development
 Information Technology Public Health Engineering Mine Planning & Design
 Mineral/Sub-Soil Exploration

Waste Management Services

Laboratory Services
Environment Lab
Food Lab
Material Lab
Suil Lab
Mineral Lab
&
Microbiology Lab

Date: 28.04.2022 Ref: Envlab/22/R-1512

			AMB	ENT AIR QUA	LITY (CORE Z	ONE)								
	AAQ3: At Middle of the Opencast Quarry													
Parameters	Unit	CPCB AAQ Standard 2009	21-Apr	21-May	21-Jun	21-Jul	21-Aug	21-Sep	Average					
PM ₁₀	μg/m³	100	61.2	60.9	62.4	51.9	53.5	66.6	59.42					
PM _{2.5}	μg/m³	60	36.7	36.9	37.5	31.1	32.1	39.9	35.70					
SO2	μg/m³	80	10.6	11.2	10.8	9.3	8.9	6.7	9.58					
NOX	μg/m³	80	11.8	10.9	14.3	12.6	11.3	13.6	12.42					
со	mg/m³	4	1.22	1.18	1.2	0.89	0.91	0.43	0.97					
03	μg/m³	100	5.4	5.3	5.4	5.5	5.44	BDL	BDL					
NH3	μg/m³	400	21.6	20.8	20.7	18.8	17.5	BDL	BDL					
Pb	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL					
Ni	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL	BDL					
As	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL	BDL					
Вар	ng/m³	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL					
C6H6	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL					

		AMBIENT AIR QUALITY (CORE ZONE)										
			AAQ3:	At Middle of	the Opencast	Quarry	477		175			
Parameters	Unit	CPCB AAQ Standard 2009	21-Oct	21-Nov	21-Dec	22-Jan	22-Feb	22-Mar	Average			
PM ₁₀	μg/m³	100	58	58.5	58.8	56.7	55.2	56.4	57.27			
PM _{2.5}	μg/m³	60	34.8	35.1	35.3	34	33.1	33.9	34.37			
502	μg/m³	80	11.5	11	11	10.9	12.1	10.5	11.17			
NOX	μg/m³	80	13.4	13.5	14.5	12.8	12.5	12.4	13.18			
со	mg/m³	4	1.08	1.16	1.1	1	1.1	1.3	1.12			
03	μg/m³	100	5.9	5.2	5.1	4.8	5.4	5.2	BDL			
NH3	μg/m³	400	50.7	24.1	19.6	21.2	19.7	22.7	BDL			
Pb	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Ni	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
As	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Вар	ng/m³	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
СбНб	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL			

Visiontek Consultancy Services Pvt. Ltd. (Committed For Better Environment) Laboratory Services

Certified for: 1SO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Infrastructure Enginering
- Water Resource Management
- · Environmental & Social Study
- Surface & Sub-Surface Investigation
- · Quality Control & Project Management
- Agricultural Development • Information Technology
- Public Health Engineering

- Mine Planning & Design
 Mineral/Sub-Soil Exploration
 Waste Management Services

Laboratory Services
Environment Lab
Food Lab
Material Lab
Soil Lab
Mineral Lab & Microbiology Lab

Date: 28.04.2022

Ref: Envlab/22/R-1513

• Renewable Energy

			AMB	IENT AIR QUA	LITY (CORE Z	ONE)			
			AAC	4: At Middle	of the COB P	lant			
Parameters .	Unit	CPCB AAQ Standard 2009	21-Apr	21-May	21-Jun	21-Jul	21-Aug	21-Sep	Average
PM ₁₀	μg/m³	100	72.6	71.8	71.9	51.4	51.4	61.9	63.5
PM _{2.5}	μg/m³	60	43.6	42.8	43.1	30.8	30.8	37.2	38.1
SO2	μg/m³	80	10.4	10.6	11.7	9.4	9.4	7.4	9.8
NOX	μg/m³	80	13.6	13.2	14.9	15.4	15.4	13	14.3
co	mg/m³	4	1.18	1.16	1.2	0.9	0.9	0.38	0.95
03	μg/m³	100	5.5	5.2	5.7	5.6	5.55	BDL	BDL
NH3	μg/m³	400	21.8	22.1	23.3	21.3	21.3	BDL	BDL
Pb	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Ni	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL	BDL
As	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Вар	ng/m³	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL
C6H6	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL

		AMBIENT AIR QUALITY (CORE ZONE)										
	8 8		AAC	Q4: At Middle	of the COB F	Plant			60			
Parameters	Unit	CPCB AAQ Standard 2009	21-Oct	21-Nov	21-Dec	22-Jan	22-Feb	22-Mar	Average			
PM ₁₀	μg/m³	100	63.5	63	65.3	65.1	65.4	70.4	65.5			
PM _{2.5}	μg/m³	60	38.1	37.8	39.2	39.1	39.2	42.2	39.3			
502	μg/m³	80	10.5	11.6	11.2	11.1	10.7	11.7	11.1			
NOX	μg/m³	80	13.1	15.3	15.1	14.2	15	14.1	14.5			
со	mg/m³	4	1.04	0.87	0.98	1.2	1.1	1	1.03			
03	μg/m³	100	5.3	6	6	6	5.5	5.3	BDL			
NH3	μg/m³	400	24.6	24	23.8	22.5	22	23.6	BDL			
Pb	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Ni	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
As	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Вар	ng/m³	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
C6H6	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL			

AIR QUALITY (BUFFER ZONE)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation
- Quality Control & Project Management • Renewable Energy
- Agricultural Development
 Information Technology
 Public Health Engineering

Mine Planning & Design
 Mineral/Sub-Soil Exploration
 Waste Management Services

Date: 28.04.2022

Laboratory Services
Environment Lab
Food Lab
Material Lab
Soil Lab Mineral Lab & Microbiology Lab

Ref: Envlab/22/R-1514

• Infrastructure Enginering

• Water Resource Management

· Environmental & Social Study

2. Ambient Air Quality (Buffer Zone)

			AMBIE	ENT AIR QUAL	ITY (BUFFER	ZONE)								
1.0	AAQ1: Near Village Ostia													
Parameters	Unit	CPCB AAQ Standard 2009	21-Apr	21-May	21-Jun	21-Jul	21-Aug	21-Sep	Average					
PM ₁₀	μg/m³	100	69.8	66.4	65.2	58.2	57.9	49.1	61.1					
PM _{2.5}	μg/m³	60	41.9	40.8	41.2	38.2	38.8	28.6	38.3					
SO2	μg/m³	80	8.2	8.3	8.8	8.1	8.6	6.1	8.0					
NOX	μg/m³	80	15.2	14.8	15.4	13.8	14.1	9.6	13.8					
со	mg/m³	4	0.59	0.51	0.56	0.48	0.49	BDL	BDL					
03	μg/m³	100	6.1	6.4	6.6	6.2	6.6	BDL	BDL					
NH3	μg/m³	400	BDL	BDL	BDL	BDL	BDL	BDL	BDL					
Pb	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL					
Ni	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL	BDL					
As	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL	BDL					
Вар	ng/m ³	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL					
C6H6	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL					

			AMBIENT AIR QUALITY (BUFFER ZONE)										
				AAQ1: Near	Village Ostia	1	VO -0		00				
Parameters	Unit	CPCB AAQ Standard 2009	21-Oct	21-Nov	21-Dec	22-Jan	22-Feb	22-Mar	Average				
PM ₁₀	μg/m³	100	66.6	62.4	62.6	61.9	62.2	62.2	63.0				
PM _{2.5}	μg/m³	60	40.6	40.8	39.4	39.8	39.6	39.6	40.0				
502	μg/m³	80	8.4	8.6	8.4	8.8	8.4	8.4	8.5				
NOX	μg/m³	80	14.6	14.2	14.2	14.6	14.6	14.6	14.5				
со	mg/m³	4	0.54	0.54	0.54	0.54	0.54	0.54	BDL				
03	μg/m³	100	6.4	6.7	6.4	6.6	BDL	BDL	BDL				
NH3	μg/m³	400	BDL	BDL	BDL	BDL	BDL	BDL	BDL				
Pb	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL				
Ni	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL	BDL				
As	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL	BDL				
Bap	ng/m³	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL				
C6H6	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL				

Visiontek Consultancy Services Pvt. Ltd.
(Committed For Better Environment)

(Laboratory Services)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Infrastructure Enginering Water Resource Management Surface & Sub-Surface Investigation
- · Environmental & Social Study
- Quality Control & Project Management
- Renewable Energy
- Agricultural Development
 Information Technology
- Public Health Engineering
- Mine Planning & Design
 Mineral/Sub-Soil Exploration
- Waste Management Services

Laboratory Services
Environment Lab
Food Lab
Material Lab
Soil Lab
Mineral Lab
&
Microbiology Lab

Ref: Envlab/22/R-1515 Date: 28.04.2022

			AMIDI	ENT AIR QUAL	III (BUFFER	(ZUNZ)			
-3	×		. 3	AAQ2: Near \	/illage Kapos	il .	XI:		25
Parameters	Unit	CPCB AAQ Standard 2009	21-Apr	21-May	21-Jun	21-Jul	21-Aug	21-Sep	Average
PM ₁₀	μg/m³	100	54.4	53.2	54.6	52.2	43.4	42.8	50.1
PM _{2.5}	μg/m³	60	32.6	33.4	35.2	33.8	25.1	25.4	30.9
SO2	μg/m³	80	8.1	8.4	8.9	8.4	5.8	5.6	7.5
NOX	μg/m³	80	12.1	12.6	13.2	12.8	10.4	9.8	11.8
со	mg/m³	4	0.51	0.54	0.59	0.52	BDL	BDL	BDL
03	μg/m³	100	BDL	BDL	BDL	BDL	BDL	BDL	BDL
NH3	μg/m³	400	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Pb	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Ni	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL	BDL
As	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Вар	ng/m³	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL
C6H6	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL

			AMBI	ENT AIR QUA	LITY (BUFFER	R ZONE)			
				AAQ2: Near	Village Kapos	si			
Parameters	Unit	CPCB AAQ Standard 2009	21-Oct	21-Nov	21-Dec	22-Jan	22-Feb	22-Mar	Average
PM ₁₀	μg/m³	100	53.6	54.6	53.6	53.6	53.6	54.2	53.9
PM _{2.5}	μg/m³	60	34.1	33.4	33.2	32.8	32.8	31.6	33.0
502	μg/m³	80	8.9	8.8	8.6	8.8	8.9	8.9	8.8
NOX	μg/m³	80	14.1	14.1	14.1	13.8	13.8	13.4	13.9
со	mg/m³	4	0.58	0.64	0.58	0.62	0.61	0.61	BDL
03	μg/m³	100	BDL	BDL	BDL	BDL	BDL	BDL	BDL
NH3	μg/m³	400	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Pb	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Ni	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL	BDL
As	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Вар	ng/m³	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL
C6H6	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Reviewed By

Mande

Puja Makandy

• Infrastructure Enginering

• Water Resource Management

· Environmental & Social Study

Visiontek Consultancy Services Pvt. Ltd.
(Committed For Better Environment)

(Laboratory Services)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation
- Quality Control & Project Management
- Renewable Energy
- Agricultural Development Information Technology • Public Health Engineering
- Mine Planning & Design
 Mineral/Sub-Soil Exploration
- Waste Management Services

Laboratory Services
Environment Lab
Food Lab
Material Lab
Soil Lab
Mineral Lab & Microbiology Lab

Ref: Envlab/22/R-1516

Date: 28.04.2022

			AMBI	NT AIR QUAL	ITY (BUFFER	ZONE)			
			AA	Q3: Near Kali	apani Towns	ship			
Parameters	Unit	CPCB AAQ Standard 2009	21-Apr	21-May	21-Jun	21-Jul	21-Aug	21-Sep	Average
PM ₁₀	μg/m³	100	80.6	78.2	77.6	56.4	46.9	60.2	66.7
PM _{2.5}	μg/m³	60	48.4	49.2	48.8	34.8	27.4	32.2	40.1
502	μg/m³	80	11.4	10.8	10.6	8	6.9	8.1	9.3
NOX	μg/m³	80	17.6	17.2	16.8	12.4	12.1	13.1	14.9
со	mg/m³	4	1.32	1.28	1.24	0.56	BDL	BDL	1.10
03	μg/m³	100	5.9	6.1	6.1	5.2	6.4	5.8	BDL
NH3	μg/m³	400	22.8	20.9	21.2	21.2	BDL	20.9	BDL
Pb	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Ni	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL	BDL
As	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Вар	ng/m³	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL
C6H6	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL

			AMBII	ENT AIR QUA	LITY (BUFFE	R ZONE)			
			AA	AQ3: Near Kal	lapani Town	ship			
Parameters	Unit	CPCB AAQ Standard 2009	21-Oct	21-Nov	21-Dec	22-Jan	22-Feb	22-Mar	Average
PM ₁₀	µg/m³	100	62.8	62.8	62.2	62.8	61.8	55.2	61.3
PM _{2.5}	μg/m³	60	43.6	41.9	41.6	41.6	40.9	33.1	40.5
SO2	μg/m³	80	9.4	9.2	8.9	8.8	9.6	12.1	9.7
NOX	μg/m³	80	13.8	14.8	13.8	13.8	14.8	12.5	13.9
со	mg/m³	4	1.16	1.26	1.24	1.16	1.31	1.1	BDL
03	μg/m³	100	6.1	6.8	6.8	6.6	6.8	5.4	BDL
NH3	μg/m³	400	21.2	21.4	21.4	21.4	21.8	19.7	BDL
Pb	µg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Ni	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL	BDL
As	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Вар	ng/m³	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL
C6H6	µg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Visiontek Consultancy Services Pvt. Ltd.
(Committed For Better Environment)

(Laboratory Services)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Infrastructure Enginering
 Water Resource Management
 Environmental & Social Study

Surface & Sub-Surface Investigation
 Quality Control & Project Management
 Renewable Energy

Agricultural Development
 Information Technology
 Public Health Engineering

Mine Planning & Design
 Mineral/Sub-Soil Exploration

Waste Management Services

Date: 28.04.2022

Laboratory Services
Environment Lab
Food Lab
Material Lab
Soil Lab
Mineral Lab
Mineral Lab
Microbiology Lab

Ref: Envlab/22/R-1517

	AMBIENT AIR QUALITY (BUFFER ZONE)									
AAQ4:Near Village Ostapal										
Parameters	Unit	CPCB AAQ Standard 2009	21-Apr	21-May	21-Jun	21-Jul	21-Aug	21-Sep	Average	
PM ₁₀	μg/m³	100	60.8	61.2	60.8	60.2	60.8	44.6	63.1	
PM _{2.5}	μg/m³	60	36.5	37.4	38.6	33.8	35.9	26.9	38.5	
502	μg/m ³	80	7.2	7.1	7.4	7.2	7.8	5.1	15.2	
NOX	μg/m³	80	11.9	12.4	12.6	11.8	13.4	9.6	19.8	
со	mg/m³	4	0.52	0.51	0.51	0.42	0.49	BDL	BDL	
03	μg/m³	100	5.4	5.8	5.6	5.2	5.4	BDL	BDL	
NH3	μg/m³	400	BDL							
Pb	μg/m³	1	BDL							
Ni	ng/m³	20	BDL							
As	ng/m ³	6	BDL							
Вар	ng/m³	5	BDL							
СбНб	μg/m³	1	BDL							

AMBIENT AIR QUALITY (BUFFER ZONE)											
AAQ4:Near Village Ostapal											
Parameters	Unit	CPCB AAQ Standard 2009	21-Oct	21-Nov	21-Dec	22-Jan	22-Feb	22-Mar	Average		
PM ₁₀	μg/m³	100	55.2	58.8	56.2	55.8	55.8	49.6	55.2		
PM _{2.5}	μg/m³	60	40.8	40.6	38.8	40.2	40.8	29.6	38.5		
SO2	μg/m³	80	8.1	8.2	7.4	8.4	8.4	6.6	7.9		
NOX	μg/m ³	80	11.8	10.8	10.8	11.8	10.9	11.6	11.3		
со	mg/m ³	4	0.54	0.46	0.42	0.44	0.54	BDL	BDL		
03	μg/m³	100	5.4	5.4	4.8	5.6	5.8	BDL	BDL		
NH3	μg/m³	400	BDL								
Pb	μg/m³	1	BDL								
Ni	ng/m³	20	BDL								
As	ng/m³	6	BDL								
Вар	ng/m³	5	BDL								
СбНб	μg/m³	1	BDL								

Mande

Puja Makanly

